Posts

Cannabinoids and the Endocannabinoid System in Early SARS-CoV-2 Infection and Long COVID-19—A Scoping Review

Coronavirus disease-19 (COVID-19) is a highly contagious illness caused by the SARS-CoV-2 virus. The clinical presentation of COVID-19 is variable, often including symptoms such as fever, cough, headache, fatigue, and an altered sense of smell and taste. Recently, post-acute “long” COVID-19 has emerged as a concern, with symptoms persisting beyond the acute infection. Vaccinations remain one of the most effective preventative methods against severe COVID-19 outcomes and the development of long-term COVID-19. However, individuals with underlying health conditions may not mount an adequate protective response to COVID-19 vaccines, increasing the likelihood of severe symptoms, hospitalization, and the development of long-term COVID-19 in high-risk populations. This review explores the potential therapeutic role of cannabinoids in limiting the susceptibility and severity of infection, both pre- and post-SARS-CoV-19 infection.

Therapeutic use of medical Cannabis in neurological diseases: a clinical update

The use of medical Cannabis has increased in recent years due to changing legal circumstances in many countries. Approval exists only for a few neurological conditions such as rare forms of epilepsy or spasticity in multiple sclerosis. Beyond that, however, medical Cannabis is used for a wide range of neurological conditions and symptoms. In Germany, in parallel with new legislation that has simplified the prescription of medical Cannabis, an accompanying survey has been implemented for which initial data are now available. In this context, our review provides an overview of the evidence for the therapeutic use of medical Cannabis in neurology, the potential benefits, and side effects.

Driving-related behaviors, attitudes, and perceptions among Australian medical cannabis users: results from the CAMS 20 survey

Road safety is an important concern amidst expanding worldwide access to legal cannabis. The present study reports on the driving-related subsection of the Cannabis as Medicine Survey 2020 (CAMS-20) which surveyed driving-related behaviors, attitudes, and perceptions among Australian medical cannabis (MC) users. Of the 1063 respondents who reported driving a motor vehicle in the past 12 months, 28% (297/1063) reported driving under the influence of cannabis (DUIC). Overall, 49–56% of respondents said they typically drive within 6 h of MC use, depending on the route of administration (oral or inhaled). Non-medical cannabis (NMC) was perceived to be more impairing for driving than MC. Binary logistic regression revealed associations between likelihood of DUIC and (1) inhaled routes of cannabis administration, (2) THC-dominant products, (3) illicit rather than prescribed use, (4) believing NMC does not impair driving, and (5) not being deterred by roadside drug testing. Overall, these findings suggest there is a relatively low perception of driving-related risk among MC users. Targeted education programs may be needed to highlight the potential risks associated with DUIC, and further research is needed to determine whether driving performance is differentially affected by MC and NMC.

Cannabidiol in Sports: Insights on How CBD could improve performance and recovery

Damage caused by physical exertion (anti-inflammatory) (Gamelin et al., 2020;Kennedy, 2017;Stone et al., 2023;Villanueva et al., 2022), and reduce pain caused by high physical demands (pain and soreness reliever) (see figure 1) (Gamelin et al., 2020;Henson et al., 2022;Kennedy, 2017). substances promote sleep controlled by the endocannabinoid system, which we can activate by consuming CBD (McCartney et al., 2020;Rojas-Valverde, 2021).Sleep management requires a precise balance of neurotransmitters, and CBD’s actions on the endocannabinoid system contribute to this balance. CBD interacts with adenosine receptors, which is significant since adenosine is a neurotransmitter that promotes sleep and relaxation.CBD promotes tranquillity and preparedness for sleep by boosting adenosine signalling.Furthermore, CBD’s effect on GABAergic neurotransmission adds to its sleep-enhancing properties (Kaul et al., 2021;Kesner & Lovinger, 2020). GABA is an inhibitory neurotransmitter that promotes relaxation and drowsiness by lowering neuronal excitability.CBD’s effect on GABA receptors can promote deeper, more comfortable sleep. Furthermore, CBD’s ability to relieve anxiety and stress, which are significant causes of sleep disruption, indirectly supports greater sleep quality (Blessing et al., 2015;Moltke & Hindocha, 2021;Ortiz Rios et al., 2022). CBD provides a biological foundation for its action via modifying endocannabinoid system signalling, increasing adenosine effects, and regulating GABAergic neurotransmission (Martinez Naya et al., 2023;Yarar, 2020;Zou & Kumar, 2018).

SELECTED CANNABIS TERPENES SYNERGIZE WITH THC TO PRODUCE INCREASED CB1 RECEPTOR ACTIVATION

The cannabis plant exerts its pharmaceutical activity primarily by the binding of cannabinoids to two G protein-coupled cannabinoid receptors, CB1 and CB2. The role that cannabis terpenes play in this activation has been considered and debated repeatedly, based on only limited experimental results. In the current study we used a controlled in-vitro heterologous expression system to quantify the activation of CB1 receptors by sixteen cannabis terpenes individually, by tetrahydrocannabinol (THC) alone and by THC-terpenes mixtures. The results demonstrate that all terpenes, when tested individually, activate CB1 receptors, at about 10-50% of the activation by THC alone.

Risk of Motor Vehicle Collisions and Culpability among Older Drivers Using Cannabis: A Meta-Analysis

Limited studies have investigated the effects of cannabis use on driving among older adults, who represent the fastest growing segment of drivers globally. We conducted a systematic review and meta-analysis to evaluate the effects of delta-9-tetrahydrocannabinol (THC) exposure on risks of (1) motor vehicle collisions (MVC) and (2) culpability for MVCs among adults 50 years and older. Three reviewers screened 7022 studies identified through MEDLINE, EMBASE, CENTRAL, and PsycINFO. Odds Ratios (OR) were calculated using the Mantel-Haenszel method in Review Manager 5.4.1. Heterogeneity was assessed using I . The National Heart, Lung, and Blood Institute tool was used to assess the quality of each study. Seven cross-sectional studies were included. Three studies evaluated culpability while four evaluated MVC. The pooled risk of MVC was not signifi- cantly different between THC-positive and THC-negative older drivers (OR, 95% CI 1.15 [0.40, 3.31]; I2 = 72%). In culpability studies, THC exposure was not significantly associated with an increased risk of being culpable for MVC among adults over the age of 50 (OR, 95% CI 1.24 [0.95, 1.61]; I2 = 0%). Inspection of funnel plots did not indicate publication bias. Our review found that THC exposure was not associated with MVC involvement nor with culpability for MVCs.

Phytochemical Constituents and Derivatives of Cannabis sativa; Bridging the Gap in Melanoma Treatment

Melanoma is deadly, physically impairing, and has ongoing treatment deficiencies. Current treatment regimens include surgery, targeted kinase inhibitors, immunotherapy, and combined approaches. Each of these treatments face pitfalls, with diminutive five-year survival in patients with advanced metastatic invasion of lymph and secondary organ tissues. Polyphenolic compounds, including cannabinoids, terpenoids, and flavonoids; both natural and synthetic, have emerging evidence of nutraceutical, cosmetic and pharmacological potential, including specific anti-cancer, anti-inflammatory, and palliative utility. Cannabis sativa is a wellspring of medicinal compounds whose direct and adjunctive application may offer considerable relief for melanoma suffers worldwide. This review aims to address the diverse applications of C. sativa’s biocompounds in the scope of melanoma and suggest it as a strong candidate for ongoing pharmacological evaluation.

Cannabis Use and COVID-19 Hospitalization Outcomes. A Retrospective Study

In vitro studies have shown cannabinoids blocking SARS-CoV-2 cellular entry and affecting replication. There is a paucity of data assessing the effect of cannabis on patients hospitalized with COVID in the USA. The aim of our study was to assess mortality and complication rates in patients hospitalized with COVID stratified by cannabis use.

Cannabis and cannabinoid medications for the treatment of chronic orofacial pain: A scoping review

To collate and summarize existing evidence for the use of cannabis and cannabinoids to treat chronic orofacial pain (COP) by oral and maxillofacial surgeons (OMFS), oral medicine specialists (OMS), and orofacial pain specialists (OPS). We systematically screened for sources including a measure of effect of a cannabinoid compound on pain in COP patients that might be treated by our target specialists. Sources were selected by two authors independently. Sources were summarized by country, publication date, objective(s), COP condition(s) studied, cannabinoid(s) studied, methods, results, limitations, and conclusions. A thematic analysis and word cloud were conducted to elucidate commonalities, emphases, and gaps amongst identified sources.

Role of the endocannabinoid system in fragile X syndrome: potential mechanisms for benefit from cannabidiol treatment

Multiple lines of evidence suggest a central role for the endocannabinoid system (ECS) in the neuronal development and cognitive function and in the pathogenesis of fragile X syndrome (FXS). This review describes the ECS, its role in the central nervous system, how it is dysregulated in FXS, and the potential role of cannabidiol as a treatment for FXS. FXS is caused by deficiency or absence of the fragile X messenger ribonucleoprotein 1 (FMR1) protein, FMRP, typically due to the presence of >200 cytosine, guanine, guanine sequence repeats leading to methylation of the FMR1 gene promoter.

Cannabis and Cannabinoid Medications for the Treatment of Chronic Orofacial Pain: A Scoping Review

We systematically screened for sources including a measure of effect of a cannabinoid compound on pain in COP patients that might be treated by our target specialists. Sources were selected by two authors independently. Sources were summarized by country, publication date, objective(s), COP condition(s) studied, cannabinoid(s) studied, methods, results, limitations, and conclusions. A thematic analysis and word cloud were conducted to elucidate commonalities, emphases, and gaps amongst identified sources.

Phytochemical Constituents and Derivatives of Cannabis sativa; Bridging the Gap in Melanoma Treatment

Schanknecht, E., Bachari, A., Nassar, N., Piva, T., & Mantri, N. (2023). Phytochemical Constituents and Derivatives of Cannabis sativa; Bridging the Gap in Melanoma Treatment. International Journal of Molecular Sciences, 24(1), 859.