Cannabinoids inhibit human keratinocyte proliferation through a non-CB1/CB2 mechanism and have a potential therapeutic value in the treatment of psoriasis
Authors
Jonathan D. Wilkinson, Elizabeth M. Williamson
Published in Journal of Dermatological Science
October 2006
Abstract
Background:
Cannabinoids from cannabis (Cannabis sativa) are anti-inflammatory and have inhibitory effects on the proliferation of a number of tumorigenic cell lines, some of which are mediated via cannabinoid receptors. Cannabinoid (CB) receptors are present in human skin and anandamide, an endogenous CB receptor ligand, inhibits epidermal keratinocyte differentiation. Psoriasis is an inflammatory disease also characterised in part by epidermal keratinocyte hyper-proliferation.
Objective: We investigated the plant cannabinoids Δ-9 tetrahydrocannabinol, cannabidiol, cannabinol and cannabigerol for their ability to inhibit the proliferation of a hyper-proliferating human keratinocyte cell line and for any involvement of cannabinoid receptors.
Methods: A keratinocyte proliferation assay was used to assess the effect of treatment with cannabinoids. Cell integrity and metabolic competence confirmed using lactate-dehydrogenase and adenosine tri-phosphate assays. To determine the involvement of the receptors, specific agonist and antagonist were used in conjunction with some phytocannabinoids. Western blot and RT-PCR analysis confirmed presence of CB1 and CB2 receptors
Results: The cannabinoids tested all inhibited keratinocyte proliferation in a concentration-dependent manner. The selective CB2 receptor agonists JWH015 and BML190 elicited only partial inhibition, the non-selective CB agonist HU210 produced a concentration-dependent response, the activity of theses agonists were not blocked by either CB1/CB2 antagonists.
Open Access
DOI: 10.1016/j.jdermsci.2006.10.009
Citation:
Wilkinson, J. D., & Williamson, E. M. (2007). Cannabinoids inhibit human keratinocyte proliferation through a non-CB1/CB2 mechanism and have a potential therapeutic value in the treatment of psoriasis. Journal of dermatological science, 45(2), 87-92.