Malignant melanoma is an aggressive skin cancer, accounting for the majority of skin cancer deaths. Prognosis is often poor and finding effective treatment remains a challenge. Tetrahydrocannabinol (THC) and cannabidiol (CBD) are main bioactive components of Cannabis sativa plant extracts that have been shown to exert anti-tumor effects. In this study, we aimed to perform gene expression analysis of human melanoma A375 cells following stimulation with C. sativa extracts.
https://www.cannabisclinicians.org/wp-content/uploads/2020/06/scc_logo-long-R-2-1.png00Michelle Smithhttps://www.cannabisclinicians.org/wp-content/uploads/2020/06/scc_logo-long-R-2-1.pngMichelle Smith2023-04-30 05:56:102023-04-30 05:56:10Gene Profiling of Cannabis-sativa-mediated Apoptosis in Human Melanoma Cells
Triple negative breast cancer (TNBC) represents an aggressive subtype of breast cancer, which is deficient in estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Thus, TNBC cells are unable to respond to the conventional hormonal therapies, making chemotherapy the only therapeutic choice. Patients with TNBC develop metastasis and recurrence over time and have reduced survival compared to patients with other subtypes of breast cancer. Therefore, there is a need for innovative therapies. Data emerged from pre-clinical studies, highlighted various antitumor activities of plant-derived Cannabis sativa and synthetic cannabinoids (CBs), including delta-9-tetrahydrocannabinol (THC) and non-psychoactive cannabidiol (CBD). On the contrary, some studies indicated that CBs might also promote tumor progression. At present, clinical studies on the effects of CBs from Cannabis sativa in cancer patients are few. In the present study, we reviewed known and possible interactions between cannabinoids and TNBC therapies.
https://www.cannabisclinicians.org/wp-content/uploads/2020/06/scc_logo-long-R-2-1.png00Michelle Smithhttps://www.cannabisclinicians.org/wp-content/uploads/2020/06/scc_logo-long-R-2-1.pngMichelle Smith2023-04-29 16:12:212023-04-29 16:13:31Phytocannabinoids in Triple Negative Breast Cancer Treatment: Current Knowledge and Future Insights
Cannabis is the most used illicit drug in the world. Global trends of decriminalization and legali- zation of cannabis lead to various forms of cannabis use and bring great concerns over adverse events, partic- ularly in the cardiovascular (CV) system. To date, the association between cannabis and adverse CV events is still controversial. We aim to conduct a systematic review and meta-analysis to assess the adverse CV events from cannabis use.
https://www.cannabisclinicians.org/wp-content/uploads/2020/06/scc_logo-long-R-2-1.png00Michelle Smithhttps://www.cannabisclinicians.org/wp-content/uploads/2020/06/scc_logo-long-R-2-1.pngMichelle Smith2023-04-29 15:39:592023-04-29 15:39:59Cannabis and adverse cardiovascular events: A systematic review and meta-analysis of observational studies
Tinnitus has a significant impact on quality of life and causes considerable psychological distress. Cannabis is known to modulate neuron hyperexcitability, provide protection against auditory damage, and has been used for treatment for many diseases which have physiological similarities with tinnitus. The objective of this study was to survey patients presenting with tinnitus regarding their perspectives and usage patterns of cannabis. Patients with a primary presenting complaint of tinnitus in a tertiary neuro-otology clinic completed a 18-item questionnaire assessing perception, attitudes, and cannabis usage patterns.
Cannabis-based products have experienced notable increases in co-usage alongside tobacco products. Several cannabinoids exhibit inhibition of a number of cytochrome P450 (CYP) and UDP glucuronosyltransferase (UGT) enzymes, but few studies have examined their inhibition of enzymes involved in nicotine metabolism. The goal of the present study was to examine potential drug–drug interactions occurring in the nicotine metabolism pathway perpetrated by cannabidiol (CBD) and its active metabolite, 7-hydroxy-CBD (7-OH-CBD). The inhibitory effects of CBD and 7-OH-CBD were tested in microsomes from HEK293 cells overexpressing individual metabolizing enzymes and from human liver tissue. Assays with overexpressing microsomes demonstrated that CBD and 7-OH-CBD inhibited CYP-mediated nicotine metabolism.
https://www.cannabisclinicians.org/wp-content/uploads/2020/06/scc_logo-long-R-2-1.png00Michelle Smithhttps://www.cannabisclinicians.org/wp-content/uploads/2020/06/scc_logo-long-R-2-1.pngMichelle Smith2023-04-29 05:04:402023-04-29 05:04:40Inhibition of Nicotine Metabolism by Cannabidiol (CBD) and 7-Hydroxycannabidiol (7-OH-CBD)
A better understanding of the endocannabinoid system and a relaxation in regulatory control of cannabis globally has increased interest in the medicinal use of cannabinoid-based products (CBP). We provide a systematic review of the rationale and current clinical trial evidence for CBP in the treatment of neuropsychiatric and neurodevelopmental disorders in children and adolescents. A systematic search of MEDLINE, Embase, PsycINFO, and the Cochrane Central Register of Trials was performed to identify articles published after 1980 about CBP for medical purposes in individuals aged 18 years or younger with selected neuropsychiatric or neurodevelopmental conditions. Risk of bias and quality of evidence was assessed for each article. Of 4466 articles screened, 18 were eligible for inclusion, addressing eight conditions (anxiety disorders (n = 1); autism spectrum disorder (n = 5); foetal alcohol spectrum disorder (n = 1); fragile X syndrome (n = 2); intellectual disability (n = 1); mood disorders (n = 2); post-traumatic stress disorder (n = 3); and Tourette syndrome (n = 3)). Only one randomised controlled trial (RCT) was identified. The remaining seventeen articles included one open-label trial, three uncontrolled before-and-after trials, two case series and 11 case reports, thus the risk of bias was high. Despite growing community and scientific interest, our systematic review identified limited and generally poor-quality evidence for the efficacy of CBP in neuropsychiatric and neurodevelopmental disorders in children and adolescents. Large rigorous RCTs are required to inform clinical care. In the meantime, clinicians must balance patient expectations with the limited evidence available.
https://www.cannabisclinicians.org/wp-content/uploads/2020/06/scc_logo-long-R-2-1.png00Michelle Smithhttps://www.cannabisclinicians.org/wp-content/uploads/2020/06/scc_logo-long-R-2-1.pngMichelle Smith2023-04-29 04:56:312023-04-29 04:56:31Efficacy of cannabinoids in neurodevelopmental and neuropsychiatric disorders among children and adolescents: a systematic review
There are several well-known treatments for Restless Legs Syndrome (RLS), including dopamine agonists (pramipexole, ropinirole, rotigotine), anticonvulsants (gabapentin and its analogs, pregabalin), oral or intravenous iron, opioids and benzodiazepines. However, in clinical practice, treatment is sometimes limited due to incomplete response or side effects and it is necessary to be aware of other treatment options for RLS, which is the purpose of this review. We performed a narrative review detailing all of the lesser known pharmacological treatment literature on RLS. The review purposefully excludes well-established, well-known treatments for RLS which are widely accepted as treatments for RLS in evidence-based reviews. We also have emphasized the pathogenetic implications for RLS of the successful use of these lesser known agents.
https://www.cannabisclinicians.org/wp-content/uploads/2020/06/scc_logo-long-R-2-1.png00Michelle Smithhttps://www.cannabisclinicians.org/wp-content/uploads/2020/06/scc_logo-long-R-2-1.pngMichelle Smith2023-04-29 04:46:382023-04-29 04:46:38A Narrative Review of the Lesser Known Medications for Treatment of Restless Legs Syndrome and Pathogenetic Implications for Their Use
Hemp is an understudied source of pharmacologically active compounds and many unique plant secondary metabolites including more than 100 cannabinoids. After years of legal restriction, research on hemp has recently demonstrated antiviral activities in silico, in vitro, and in vivo for cannabidiol (CBD), Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), and several other cannabinoids against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), human immunodeficiency virus (HIV), and γ-herpes viruses. Mechanisms of action include inhibition of viral cell entry, inhibition of viral proteases, and stimulation of cellular innate immune responses. The anti-inflammatory properties of cannabinoids are also under investigation for mitigating the cytokine storm of COVID-19 and controlling chronic inflammation in people living with HIV. Retrospective clinical studies support antiviral activities of CBD, Δ9-THC, and cannabinoid mixtures as do some prospective clinical trials, but appropriately designed clinical trials of safety and efficacy of antiviral cannabinoids are urgently needed.
Cannabidiol (CBD) is thought to have multiple biological effects, including the ability to attenuate inflammatory processes. Cannabigerols (CBGA and its decarboxylated CBG molecule) have pharmacological profiles similar to CBD. The endocannabinoid system has recently emerged to contribute to kidney disease, however, the therapeutic properties of cannabinoids in kidney disease remain largely unknown. In this study, we determined whether CBD and CBGA can attenuate kidney damage in an acute kidney disease model induced by the chemotherapeutic cisplatin. In addition, we evaluated the anti-fibrosis effects of these cannabinoids in a chronic kidney disease model induced by unilateral ureteral obstruction (UUO). We find that CBGA, but not CBD, protects the kidney from cisplatin-induced nephrotoxicity.
Medical cannabis (MC) has recently garnered interest as a potential treatment for neurologic diseases, including Parkinson’s disease (PD). A retrospective chart review was conducted to explore the impact of MC on the symptomatic treatment of patients with PD. Patients with PD treated with MC in the normal course of clinical practice were included (n = 69). Data collected from patient charts included MC ratio/formulation changes, PD symptom changes after initiation of MC, and adverse events (AEs) from MC use. Information regarding changes in concomitant medications after MC initiation, including opioids, benzodiazepines, muscle relaxants, and PD medications, was also collected.
https://www.cannabisclinicians.org/wp-content/uploads/2020/06/scc_logo-long-R-2-1.png00Michelle Smithhttps://www.cannabisclinicians.org/wp-content/uploads/2020/06/scc_logo-long-R-2-1.pngMichelle Smith2023-04-22 11:24:242023-04-22 11:24:24Medical Cannabis in the Treatment of Parkinson’s Disease
The cannabis plant exerts its pharmaceutical activity primarily by the binding of cannabinoids to two G protein-coupled cannabinoid receptors, CB1 and CB2. The role that cannabis terpenes play in this activation has been considered and debated repeatedly, based on only limited experimental results. In the current study we used a controlled in-vitro heterologous expression system to quantify the activation of CB1 receptors by sixteen cannabis terpenes individually, by tetrahydrocannabinol (THC) alone and by THC-terpenes mixtures. The results demonstrate that all terpenes, when tested individually, activate CB1 receptors, at about 10-50% of the activation by THC alone.
Cannabis has been used for centuries to treat pain. The antinociceptive activity of tetrahydrocannabinol (THC) or cannabidiol (CBD) has been widely studied. However, the antinociceptive effects of other cannabis components, such as cannabichromene (CBC) and cannabigerol (CBG), have rarely been revealed. The antinociceptive mechanism of CBG is not yet clear, so we investigated the antinociceptive effect of CBG on different pain models, and explored the mechanism of action of CBG to exert antinociceptive effects. In the current study, we compared the antinociceptive effects of CBC, CBD, and CBG on the carrageenan-induced inflammatory pain model in mice, and the results showed that CBG had a better antinociceptive effects through intraplantar administration
https://www.cannabisclinicians.org/wp-content/uploads/2020/06/scc_logo-long-R-2-1.png00Michelle Smithhttps://www.cannabisclinicians.org/wp-content/uploads/2020/06/scc_logo-long-R-2-1.pngMichelle Smith2023-04-22 06:50:502023-04-22 06:51:16The antinociceptive activity and mechanism of action of cannabigerol