Combination of cannabidiol with low‑dose naltrexone increases the anticancer action of chemotherapy in vitro and in vivo

We previously reported that both cannabidiol (CBD) and low‑dose naltrexone (LDN) exhibit complex effects on G‑protein coupled receptors, which can impact the expression and function of other members of this superfamily. These receptors feed into and interact with central signalling cascades that determine the ease by which cells engage in apoptosis, and can be used as a way to prime cancer cells to other treatments. The present study was designed to investigate the effect of combining these two agents on cancer cell lines in vitro and in a mouse model, and focused on how the sequence of administration may affect the overall action. The results showed both agents had minimal effect on cell numbers when used simultaneously; however, the combination of LDN and CBD, delivered in this specific sequence, significantly reduced the number of cells, and was superior to the regimen where the order of the agents was reversed. For example, there was a 35% reduction in cell numbers when using LDN before CBD compared to a 22% reduction when using CBD before LDN. The two agents also sensitised cells to chemotherapy as significant decreases in cell viability were observed when they were used before chemotherapy. In mouse models, the use of both agents enhanced the effect of gemcitabine, and crucially, their use resulted in no significant toxicity in the mice, which actually gained more weight compared to those without this pre‑treatment (+6.5 vs. 0%). Overall, the results highlight the importance of drug sequence when using these drugs. There is also a need to translate these observations into standard chemotherapy regimens, especially for common tumour types where treatment is often not completed due to toxicities.

Cannabidiol Induces Cell Death in Human Lung Cancer Cells and Cancer Stem Cells

Currently, there is no effective therapy against lung cancer due to the development of resistance. Resistance contributes to disease progression, recurrence, and mortality. The presence of so-called cancer stem cells could explain the ineffectiveness of conventional treatment, and the development of successful cancer treatment depends on the targeting also of cancer stem cells. Cannabidiol (CBD) is a cannabinoid with anti-tumor properties. However, the effects on cancer stem cells are not well understood. The effects of CBD were evaluated in spheres enriched in lung cancer stem cells and adherent lung cancer cells. We found that CBD decreased viability and induced cell death in both cell populations.

Lung cancer patient who had declined conventional cancer treatment: could the self-administration of ‘CBD oil’ be contributing to the observed tumour regression?

Conventional lung cancer treatments include surgery, chemotherapy and radiotherapy; however, these treatments are often poorly tolerated by patients. Cannabinoids have been studied for use as a primary cancer treatment. Cannabinoids, which are chemically similar to our own body’s endocannabinoids, can interact with signalling pathways to control the fate of cells, including cancer cells. We present a patient who declined conventional lung cancer treatment. Without the knowledge of her clinicians, she chose to self-administer ‘cannabidiol (CBD) oil’ orally 2–3 times daily. Serial imaging shows that her cancer reduced in size progressively from 41 mm to 10 mm over a period of 2.5 years. Previous studies have failed to agree on the usefulness of cannabinoids as a cancer treatment. This case appears to demonstrate a possible benefit of ‘CBD oil’ intake that may have resulted in the observed tumour regression. The use of cannabinoids as a potential cancer treatment justifies further research.

Pros and Cons of the Cannabinoid System in Cancer: Focus on Hematological Malignancies

The endocannabinoid system (ECS) is a composite cell-signaling system that allows endogenous cannabinoid ligands to control cell functions through the interaction with cannabinoid receptors. Modifications of the ECS might contribute to the pathogenesis of different diseases, including cancers. However, the use of these compounds as antitumor agents remains debatable.

Cannabinoids in the landscape of cancer

Cannabinoids are a group of terpenophenolic compounds derived from the Cannabis sativa L. plant. There is a growing body of evidence from cell culture and animal studies in support of cannabinoids possessing anticancer properties.

Medical marijuana utilization in gynecologic cancer patients

Medical marijuana (MM) use is common among cancer patients, but relatively little is known about the usage patterns and efficacy of MM used by gynecologic cancer patients.

A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid

The endocannabinoid system (ECS), a conserved physiological system emerged as a novel pharmacological target for its significant role and potential therapeutic benefits ranging from neurological diseases to cancer. Among both, CB1 and CB2R types, CB2R have received attention for its pharmacological effects as antioxidant, anti-inflammatory, immunomodulatory and antiapoptotic that can be achieved without causing psychotropic adverse effects through CB1R.

A randomized trial of medical cannabis in patients with stage IV cancers to assess feasibility, dose requirements, impact on pain and opioid use, safety, and overall patient satisfaction

The prevalence of medical cannabis (MC) use in patients with cancer is growing, but questions about safety, efficacy, and dosing remain. Conducting randomized, controlled trials (RCTs) using state-sponsored MC programs is novel and could provide data needed to guide patients and providers.

Cannabidiol Treatment Results in a Common Gene Expression Response Across Aggressive Cancer Cells from Various Origins

Glioblastoma multiforme (GBM) is a relatively rare type of brain tumour with an incidence rate around 6 per 100,000. Even with the widely practiced combination of radiotherapy with adjuvant temozolomide, the median overall survival remains low with just 13.5 to 16 months after diagnosis. Patients and Methods: We retrospectively reviewed the survival of a cohort of 15 consecutive, unselected patients with histopathologically confirmed glioblastoma multiforme (GBM) who received CBD (400 to 600 mg orally per day) in addition to standard therapy (maximum resection of the tumour followed by radio- chemotherapy). Results: Of 15 patients, seven (46.7%) are now living for at least 24 months, and four (26.7%) for at least 36 months. This is more than twice as long as has been previously reported in the literature. The mean overall survival is currently 24.2 months (median 21 months). Conclusion: CBD is a well supported co-medication and seems to prolong the survival of patients with glioblastoma multiforme.

Cannabidiol Treatment Results in a Common Gene Expression Response Across Aggressive Cancer Cells from Various Origins

We previously reported that cannabidiol (CBD), a cannabinoid with a low toxicity profile, downregulated the expression of the prometastatic gene inhibitor of DNA binding 1 (ID1) in cancer cells, leading to inhibition of tumor progression in vivo. While CBD is broadly used, including in the self-medication of cancer patients, and CBD-based therapies are undergoing clinical evaluation for cancer treatment, its mechanisms of action are still poorly understood. Methods: In this study, using microarray analysis and Western blot analysis for validation, we attempted to identify the full spectrum of genes regulated by CBD across various aggressive cancer cell lines, including the breast, brain, head and neck, and prostate. Results: We confirmed that ID1 was a major target downregulated by CBD and also discovered that CBD inhibited FOXM1 (Forkhead box M1), a transcriptional activator involved in cell proliferation, while simultaneously upregulating GDF15 (growth differentiation factor 15), a cytokine associated with tissue differentiation. Conclusion: Our results suggest that, by modulating expression of shared key cancer-driving genes, CBD could represent a promising nontoxic therapeutic for treating tumors of various origins.

Functional Fine-Tuning of Metabolic Pathways by the Endocannabinoid System—Implications for Health and Disease

The endocannabinoid system (ECS) employs a huge network of molecules (receptors, ligands, and enzymatic machinery molecules) whose interactions with other cellular networks have still not been fully elucidated. Endogenous cannabinoids are molecules with the primary function of control of multiple metabolic pathways. Maintenance of tissue and cellular homeostasis by functional fine-tuning of essential metabolic pathways is one of the key characteristics of the ECS. It is implicated in a variety of physiological and pathological states and an attractive pharmacological target yet to reach its full potential. This review will focus on the involvement of ECS in glucose and lipid metabolism, food intake regulation, immune homeostasis, respiratory health, inflammation, cancer and other physiological and pathological states will be substantiated using freely available data from open-access databases, experimental data and literature review.

Exploring the Use of Medical Marijuana for Supportive Care of Oncology Patients

Medical marijuana, also known as cannabis, is being sought by patients and survivors to alleviate common symptoms of cancer and its treatments that affect their quality of life. The National Academy of Sciences (2017) reports conclusive or substantial evidence that cannabis is successful in treating chronic cancer pain and chemotherapy-induced nausea and vomiting, moderate evidence that cannabinoids are beneficial for sleep disorders that accompany chronic illnesses, and limited evidence supporting use for appetite stimulation and anxiety.