Used to classify article posts by terms used for medical conditions. It’s mostly aimed at practitioners and physicians.

A single-center real-life study on the use of medical cannabis in patients with dystonia

While cannabis-based medicine is being commonly used in patients with movement disorders, there is a scarcity of publications regarding the effect of cannabis on dystonia. We aimed to describe medical cannabis use in patients with dystonia and related pain. We employed a structured interview to obtain data on the cannabis treatment regimen, perception of effectiveness and side effect profile. Eligible participants were patients diagnosed with dystonia from the movement disorders unit at the Tel-Aviv Medical Center who had used licensed medical cannabis between January 2019 and January 2021.

Low Doses of β-Caryophyllene Reduced Clinical and Paraclinical Parameters of an Autoimmune Animal Model of Multiple Sclerosis: Investigating the Role of CB2 Receptors in Inflammation by Lymphocytes and Microglial

Multiple Sclerosis (MS) is a prevalent inflammatory disease in which the immune system plays an essential role in the damage, inflammation, and demyelination of central nervous system neurons (CNS). The cannabinoid receptor type 2 (CB2) agonists possess anti-inflammatory effects against noxious stimuli and elevate the neuronal survival rate. We attempted to analyze the protective impact of low doses of β-Caryophyllene (BCP) in experimental autoimmune encephalomyelitis (EAE) mice as a chronic MS model. Immunization of female C57BL/6 mice was achieved through two subcutaneous injections into different areas of the hind flank with an emulsion that consisted of myelin Myelin oligodendrocyte glycoprotein (MOG)35–55 (150 µg) and complete Freund’s adjuvant (CFA) (400 µg) with an equal volume. Two intraperitoneal (i.p.) injections of pertussis toxin (300 ng) were performed on the animals on day zero (immunizations day) and 48 h (2nd day) after injection of MOG + CFA. The defensive effect of low doses of BCP (2.5 and 5 mg/kg/d) was investigated in the presence and absence of a CB2 receptor antagonist (1 mg/kg, AM630) in the EAE model. We also examined the pro/anti-inflammatory cytokine levels and the polarization of brain microglia and spleen lymphocytes in EAE animals. According to our findings, low doses of BCP offered protective impacts in the EAE mice treatment in a CB2 receptor-dependent way. In addition, according to results, BCP decreased the pathological and clinical defects in EAE mice via modulating adaptive (lymphocytes) and innate (microglia) immune systems from inflammatory phenotypes (M1/Th1/Th17) to anti-inflammatory (M2/Th2/Treg) phenotypes. Additionally, BCP elevated the anti-inflammatory cytokine IL-10 and reduced blood inflammatory cytokines. BCP almost targeted the systemic immune system more than the CNS immune system. Thus, a low dose of BCP can be suggested as a therapeutic effect on MS treatment with potent anti-inflammatory effects and possibly lower toxicity.

The pharmacology and therapeutic role of cannabidiol in diabetes

In recent years, cannabidiol (CBD), a non-psychotropic cannabinoid, has garnered sub- stantial interest in drug development due to its broad pharmacological activity and multi-target effects. Diabetes is a chronic metabolic disease that can damage multiple organs in the body, leading to the development of complications such as abnor- mal kidney function, vision loss, neuropathy, and cardiovascular disease. CBD has demonstrated significant therapeutic potential in treating diabetes mellitus and its com- plications owing to its various pharmacological effects. This work summarizes the role of CBD in diabetes and its impact on complications such as cardiovascular dysfunction, nephropathy, retinopathy, and neuropathy. Strategies for discovering molecular targets for CBD in the treatment of diabetes and its complications are also proposed. Moreover, ways to optimize the structure of CBD based on known targets to generate new CBD analogues are explored.

Cannabis for the treatment of amyotrophic lateral sclerosis: What is the patients’ view?

Cannabis may have therapeutic benefits to relieve symptoms of amyotrophic lateral sclerosis (ALS) thanks to its pleiotropic pharmacological activity. This study is the first to present a large questionnaire-based survey about the “real-life” situation regarding cannabis use in the medical context in ALS patients in France. There were 129 respondents and 28 reported the use of cannabis (21.7%) to relieve symptoms of ALS. Participants mostly reported the use of cannabidiol (CBD) oil and cannabis weed and declared benefits both on motor (rigidity, cramps, fasciculations) and non-motor (sleep quality, pain, emotional state, quality of life, depression) symptoms and only eight reported minor adverse reactions (drowsiness, euphoria and dry mouth). Even if cannabis is mostly used outside medical pathways and could expose patients to complications (street and uncontrolled drugs, drug-drug interactions, adverse effects…), most of the participants reported “rational” consumption (legal cannabinoids, with only few combustion and adverse reactions). Despite some limitations, this study highlights the need for further research on the potential benefits of cannabis use for the management of ALS motor and non-motor symptoms. Indeed, there is an urgent need and call for and from patients to know more about cannabis and secure its use in a medical context.

A comparison of advertised versus actual cannabidiol (CBD) content of oils, aqueous tinctures, e-liquids and drinks purchased in the UK

To evaluate the efficacy and safety of cannabidiol (CBD) for the treatment of epilepsy in a real-world setting.
In this retrospective observational study, we included PwE with epilepsy who received a prescription for CBD between 01.03.2019 and 30.11.2022 and had a follow-up period ≥ 3 months. Participants were evaluated at baseline and after 3, 6, and 12 months. “Responders” were defined as individuals experiencing a reduction in seizure frequency > 30% but < 80% compared to baseline, while "super responders" were those with a reduction ≥ 80%. Adverse events were recorded to assess safety.

Real-world experience with cannabidiol as add-on treatment in drug-resistant epilepsy

To evaluate the efficacy and safety of cannabidiol (CBD) for the treatment of epilepsy in a real-world setting.
In this retrospective observational study, we included PwE with epilepsy who received a prescription for CBD between 01.03.2019 and 30.11.2022 and had a follow-up period ≥ 3 months. Participants were evaluated at baseline and after 3, 6, and 12 months. “Responders” were defined as individuals experiencing a reduction in seizure frequency > 30% but < 80% compared to baseline, while "super responders" were those with a reduction ≥ 80%. Adverse events were recorded to assess safety.

The Effectiveness and Adverse Events of Cannabidiol and Tetrahydrocannabinol Used in the Treatment of Anxiety Disorders in a PTSD Subpopulation: An Interim Analysis of an Observational Study

Anxiety is a condition for which current treatments are often limited by adverse events (AEs). Components of medicinal cannabis, cannabidiol (CBD) and tetrahydrocannabinol (THC), have been proposed as potential treatments for anxiety disorders, specifically posttraumatic stress disorder (PTSD). To evaluate quality-of-life outcomes after treatment with various cannabis formulations to determine the effectiveness and associated AEs.

Cannabis sativa demonstrates anti-hepatocellular carcinoma potentials in animal model: in silico and in vivo studies of the involvement of Akt

Targeting protein kinase B (Akt) and its downstream signaling proteins are promising options in designing novel and potent drug candidates against hepatocellular carcinoma (HCC). The present study explores the anti-HCC potentials of Cannabis sativa (C. sativa) extract via the involvement of Akt using both in silico and in vivo animal models of HCC approaches.
Phytoconstituents of C. sativa extract obtained from Gas Chromatography Mass-spectrometry (GCSM) were docked into the catalytic domain of Akt-2. The Diethylnitrosamine (DEN) model of HCC was treated with C. sativa extract. The effects of C. sativa extract treatments on DEN model of hepatocellular carcinoma were assessed by One-way analysis of variance (ANOVA) of the treated and untreated groups

Cannabinoids: Emerging sleep modulator

Sleep is an essential biological phase of our daily life cycle and is necessary for maintaining homeostasis, alertness, metabolism, cognition, and other key functions across the animal kingdom. Dysfunctional sleep leads to deleterious effects on health, mood, and cognition, including memory deficits and an increased risk of diabetes, stroke, and neurological disorders. Sleep is regulated by several brain neuronal circuits, neuromodulators, and neurotransmitters, where cannabinoids have been increasingly found to play a part in its modulation. Cannabinoids, a group of lipid metabolites, are regulatory molecules that bind mainly to cannabinoid receptors (CB1 and CB2). Much evidence supports the role of cannabinoid receptors in the modulation of sleep, where their alteration exhibits sleep-promoting effects, including an increase in non-rapid-eye movement sleep and a reduction in sleep latency. However, the pharmacological alteration of CB1 receptors is associated with adverse psychotropic effects, which are not exhibited in CB2 receptor alteration. Hence, selective alteration of CB2 receptors is also of clinical importance, where it could potentially be used in treating sleep disorders. Thus, it is crucial to understand the neurobiological basis of cannabinoids in sleep physiology. In this review article, the alteration of the endocannabinoid system by various cannabinoids and their respective effects on the sleep-wake cycle are discussed based on recent findings. The mechanisms of the cannabinoid receptors on sleep and wakefulness are also explored for their clinical implications and potential therapeutic use on sleep disorders.

Under the umbrella of depression and Alzheimer’s disease physiopathology: can cannabinoids be a dual-pleiotropic therapy?

Depression and Alzheimer´s disease (AD) are two disorders highly prevalent worldwide. Depression affects more than 300 million people worldwide while AD affects 60% to 80% of the 55 million cases of dementia. Both diseases are affected by aging with high prevalence in elderly and share not only the main brain affected areas but also several physiopathological mechanisms. Depression disease is already ascribed as a risk factor to the development of AD. Despite the wide diversity of pharmacological treatments currently available in clinical practice for depression management, they remain associated to a slow recovery process and to treatment-resistant depression. On the other hand, AD treatment is essentially based in symptomatology relieve. Thus, the need for new multi-target treatments arises.

The Impact Of Cannabidiol In Patients With Early Psychosis: A Randomized Controlled Trial

We aimed to study the effects of cannabidiol (CBD) in out-patients with early psychosis on clinical metrics of psychosis and cognition and on psychophysiological electroencephalogram (EEG) metrics of psychosis. Adult outpatient subjects with a primary psychotic disorder within approximately five years of psychosis onset were enrolled in a four-week, two-period, randomized, placebo-controlled crossover trial (clinicaltrials.gov NCT02504151). Subjects were randomized in a one-to-one ratio to receive either CBD (oral 800 mg/day) or placebo in the first of two treatment periods in a randomized, double-blind manner. Primary outcome measures assessed were psychosis symptoms measured using the Positive and Negative Syndrome Scale (PANSS); and cognition measured using the MATRICS Consensus Cognitive Battery (MCCB). Secondary clinical outcomes included Clinical Global Impression of Severity or of Improvement (CGI-S, CGI-I) and Quality of Life Scale (QLS). Statistical analyses were conducted using linear mixed models and nonparametric tests.

Under the umbrella of depression and Alzheimer’s disease physiopathology: can cannabinoids be a dual-pleiotropic therapy?

Depression and Alzheimer´s disease (AD) are two disorders highly prevalent worldwide. Depression affects more than 300 million people worldwide while AD affects 60% to 80% of the 55 million cases of dementia. Both diseases are affected by aging with high prevalence in elderly and share not only the main brain affected areas but also several physiopathological mechanisms. Depression disease is already ascribed as a risk factor to the development of AD. Despite the wide diversity of pharmacological treatments currently available in clinical practice for depression management, they remain associated to a slow recovery process and to treatment-resistant depression. On the other hand, AD treatment is essentially based in symptomatology relieve. Thus, the need for new multi-target treatments arises.