Cannabidiol and Cannabigerol Exert Antimicrobial Activity without Compromising Skin Microbiota

Cannabidiol (CBD) and cannabigerol (CBG) are two pharmacologically active phytocannabinoids of Cannabis sativa L. Their antimicrobial activity needs further elucidation, particularly for CBG, as reports on this cannabinoid are scarce. We investigated CBD and CBG’s antimicrobial potential, including their ability to inhibit the formation and cause the removal of biofilms. Our results demonstrate that both molecules present activity against planktonic bacteria and biofilms, with both cannabinoids removing mature biofilms at concentrations below the determined minimum inhibitory concentrations. We report for the first time minimum inhibitory and lethal concentrations for Pseudomonas aeruginosa and Escherichia coli (ranging from 400 to 3180 µM), as well as the ability of cannabinoids to inhibit Staphylococci adhesion to keratinocytes, with CBG demonstrating higher activity than CBD.

The Effectiveness and Safety of Pharmaceutical-Grade Cannabidiol in the Treatment of Mastocytosis-Associated Pain: A Pilot Study

Mastocytosis patients often experience a number of symptoms, including mastocytosis-associated pain that is difficult to manage due to resistance to usual antalgic treatments and/or the patient’s poor tolerance. Mastocytosis patients display significantly higher levels of indoleamine-2,3-dioxygenase-1 (IDO1) activity, leading to hyperactivation of the N-methyl-D-aspartate receptor. As cannabidiol (CBD) is known to inhibit IDO1′s enzymatic activity, we hypothesized that pharmaceutical-grade CBD is an effective treatment for mastocytosis-associated pain. Patients with non-advanced mastocytosis and refractory pain were eligible for inclusion in this observational pilot study.

A Retrospective Cohort Study That Examined the Impact of Cannabis Consumption on Long-Term Kidney Outcomes

Cannabis consumption for recreational and medical use is increasing worldwide. However, the long-term effects on kidney health and disease are largely unknown. Post hoc analysis of cannabis use as a risk factor for kidney disease was performed using data from the Assessment, Serial Evaluation, and Subsequent Sequelae of Acute Kidney Injury (ASSESS-AKI) study that enrolled hospitalized adults with and without acute kidney injury from four U.S. centers during 2009–2015. Associations between self-reported cannabis consumption and the categorical and continuous outcomes were determined using multivariable Cox regression and linear mixed models, respectively.

Scientific Validation of Cannabidiol for Management of Dog and Cat Diseases

Cannabidiol (CBD) is a non-psychotropic phytocannabinoid of the plant Cannabis sativa L. CBD is increasingly being explored as an alternative to conventional therapies to treat health disorders in dogs and cats. Mecha- nisms of action of CBD have been investigated mostly in rodents and in vitro and include modulation of CB1, CB2, 5-HT, GPR, and opioid receptors. In companion animals, CBD appears to have good bioavailability and safety profile with few side effects at physiological doses. Some dog studies have found CBD to improve clinical signs associated with osteoarthritis, pruritus, and epilepsy. However, further studies are needed to conclude a therapeu- tic action of CBD for each of these conditions, as well as for decreasing anxiety and aggression in dogs and cats. Herein, we summarize the avail- able scientific evidence associated with the mechanisms of action of CBD, including pharmacokinetics, safety, regulation, and efficacy in ameliorating various health conditions in dogs and cats.

Scientific Validation of Cannabidiol for Management of Dog and Cat Diseases

Cannabidiol (CBD) is a non-psychotropic phytocannabinoid of the plant Cannabis sativa L. CBD is increasingly being explored as an alternative to conventional therapies to treat health disorders in dogs and cats. Mecha- nisms of action of CBD have been investigated mostly in rodents and in vitro and include modulation of CB1, CB2, 5-HT, GPR, and opioid receptors. In companion animals, CBD appears to have good bioavailability and safety profile with few side effects at physiological doses. Some dog studies have found CBD to improve clinical signs associated with osteoarthritis, pruritus, and epilepsy. However, further studies are needed to conclude a therapeu- tic action of CBD for each of these conditions, as well as for decreasing anxiety and aggression in dogs and cats. Herein, we summarize the avail- able scientific evidence associated with the mechanisms of action of CBD, including pharmacokinetics, safety, regulation, and efficacy in ameliorating various health conditions in dogs and cats.

Cannabidiol: Bridge between Antioxidant Effect, Cellular Protection, and Cognitive and Physical Performance

The literature provides scientific evidence for the beneficial effects of cannabidiol (CBD), and these effects extend beyond epilepsy treatment (e.g., Lennox–Gastaut and Dravet syndromes), notably the influence on oxidative status, neurodegeneration, cellular protection, cognitive function, and physical performance. However, products containing CBD are not allowed to be marketed everywhere in the world, which may ultimately have a negative effect on health as a result of the uncontrolled CBD market. After the isolation of CBD follows the discovery of CB1 and CB2 receptors and the main enzymatic components (diacylglycerol lipase (DAG lipase), monoacyl glycerol lipase (MAGL), fatty acid amino hydrolase (FAAH)).

A Retrospective Medical Record Review of Adults with Non-Cancer Diagnoses Prescribed Medicinal Cannabis

Research describing patients using medicinal cannabis and its effectiveness is lacking. We aimed to describe adults with non-cancer diagnoses who are prescribed medicinal cannabis via a retrospective medical record review and assess its effectiveness and safety. From 157 Australian records, most were female (63.7%; mean age 63.0 years). Most patients had neurological (58.0%) or musculoskeletal (24.8%) conditions. Medicinal cannabis was perceived beneficial by 53.5% of patients.

Characterization of the Antitumor Potential of Extracts of Cannabis sativa Strains with High CBD Content in Human Neuroblastoma

Cannabis has been used for decades as a palliative therapy in the treatment of cancer. This is because of its beneficial effects on the pain and nausea that patients can experience as a result of chemo/radiotherapy. Tetrahydrocannabinol and cannabidiol are the main compounds present in Cannabis sativa, and both exert their actions through a receptor-mediated mechanism and through a non-receptor-mediated mechanism, which modulates the formation of reactive oxygen species. These oxidative stress conditions might trigger lipidic changes, which would compromise cell membrane stability and viability. In this sense, numerous pieces of evidence describe a potential antitumor effect of cannabinoid compounds in different types of cancer, although controversial results limit their implementation. In order to further investigate the possible mechanism involved in the antitumoral effects of cannabinoids, three extracts isolated from Cannabis sativa strains with high cannabidiol content were analyzed. Cell mortality, cytochrome c oxidase activity and the lipid composition of SH-SY5Y cells were determined in the absence and presence of specific cannabinoid ligands, with and without antioxidant pre-treatment.

The impact of recreational cannabis markets on motor vehicle accident, suicide, and opioid overdose fatalities

In the U.S., an increasing number of states are legalizing regulated commercial markets for recreational cannabis, which allows private industry to produce, distribute, and sell marijuana to those 21 and older. The health impacts of these markets are not fully understood. Preliminary evidence suggests recreational markets may be associated with increased use among adults, which indicates there may be downstream health impacts on outcomes related to cannabis use. Three causes of death that are linked to cannabis use are motor vehicle accidents, suicide, and opioid overdose. Drawing on data from U.S. death certificates from 2009 to 2019, we conducted a difference-in-differences analysis to estimate the impact of recreational markets on fatalities from motor vehicle accidents, suicide, and opioid overdose in seven states: Colorado, Washington, Oregon, Alaska, Nevada, California, and Massachusetts.

Beyond Pain Relief: A Review on Cannabidiol Potential in Medical Therapies

The phytocannabinoid cannabidiol (CBD) is receiving increasing attention due to its pharmacological properties. Although CBD is extracted from Cannabis sativa, it lacks the psychoactive effects of Δ9-tetrahydrocannabinol (THC) and has become an attractive compound for pharmacological uses due to its anti-inflammatory, antioxidant, anticonvulsant, and anxiolytic potential. The molecular mechanisms involved in CBD’s biological effects are not limited to its interaction with classical cannabinoid receptors, exerting anti-inflammatory or pain-relief effects. Several pieces of evidence demonstrate that CBD interacts with other receptors and cellular signaling cascades, which further support CBD’s therapeutic potential beyond pain management. In this review, we take a closer look at the molecular mechanisms of CBD and its potential therapeutic application in the context of cancer, neurodegeneration, and autoimmune diseases.

The Endocannabinoid System and Physical Exercise

The endocannabinoid system (ECS) is involved in various processes, including brain plas- ticity, learning and memory, neuronal development, nociception, inflammation, appetite regulation, digestion, metabolism, energy balance, motility, and regulation of stress and emotions. Physical exercise (PE) is considered a valuable non-pharmacological therapy that is an immediately available and cost-effective method with a lot of health benefits, one of them being the activation of the endoge- nous cannabinoids. Endocannabinoids (eCBs) are generated as a response to high-intensity activities and can act as short-term circuit breakers, generating antinociceptive responses for a short and variable period of time. A runner’s high is an ephemeral feeling some sport practitioners experience during endurance activities, such as running. The release of eCBs during sustained physical exercise appears to be involved in triggering this phenomenon. The last decades have been characterized by an increased interest in this emotional state induced by exercise, as it is believed to alleviate pain, induce mild sedation, increase euphoric levels, and have anxiolytic effects. This review provides information about the current state of knowledge about endocannabinoids and physical effort and also an overview of the studies published in the specialized literature about this subject.

Reprogramming systemic and local immune function to empower immunotherapy against glioblastoma

The limited benefits of immunotherapy against glioblastoma (GBM) is closely related to the paucity of T cells in brain tumor bed. Both systemic and local immunosuppression contribute to the deficiency of tumor-infiltrating T cells. However, the current studies focus heavily on the local immunosuppressive tumor microenvironment but not on the co-existence of systemic immuno- suppression. Here, we develop a nanostructure named Nano-reshaper to co- encapsulate lymphopenia alleviating agent cannabidiol and lymphocyte recruiting cytokine LIGHT. The results show that Nano-reshaper increases the number of systemic T cells and improves local T-cell recruitment condition, thus greatly increasing T-cell infiltration. When combined with immune checkpoint inhibitor, this therapeutic modality achieves 83.3% long-term survivors without recurrence in GBM models in male mice. Collectively, this work unveils that simultaneous reprogramming of systemic and local immune function is critical for T-cell based immunotherapy and provides a clinically translatable option for combating brain tumors.