Posts

Effects of Δ9-tetrahydrocannabinol on aversive memories and anxiety: a review from human studies

Posttraumatic stress disorder (PTSD) may stem from the formation of aberrant and enduring aversive memories. Some PTSD patients have recreationally used Cannabis, probably aiming at relieving their symptomatology. However, it is still largely unknown whether and how Cannabis or its psychotomimetic compound Δ9-tetrahydrocannabinol (THC) attenuates the aversive/traumatic memory outcomes. Here, we seek to review and discuss the effects of THC on aversive memory extinction and anxiety in healthy humans and PTSD patients.

Cannabidiol (CBD) in Cancer Management

Cannabidiol (CBD) is one of the main constituents of the plant Cannabis sativa.
Surveys suggest that medicinal cannabis is popular amongst people diagnosed with cancer. CBD
is one of the key constituents of cannabis, and does not have the potentially intoxicating effects
that tetrahydrocannabinol (THC), the other key phytocannabinoid has. Research indicates the CBD
may have potential for the treatment of cancer, including the symptoms and signs associated with
cancer and its treatment. Preclinical research suggests CBD may address many of the pathways
involved in the pathogenesis of cancers. Preclinical and clinical research also suggests some evidence
of efficacy, alone or in some cases in conjunction with tetrahydrocannabinol (THC, the other key
phytocannabinoid in cannabis), in treating cancer-associated pain, anxiety and depression, sleep
problems, nausea and vomiting, and oral mucositis that are associated with cancer and/or its
treatment. Studies also suggest that CBD may enhance orthodox treatments with chemotherapeutic
agents and radiation therapy and protect against neural and organ damage. CBD shows promise as
part of an integrative approach to the management of cancer.

Combination of cannabidiol with low‑dose naltrexone increases the anticancer action of chemotherapy in vitro and in vivo

We previously reported that both cannabidiol (CBD) and low‑dose naltrexone (LDN) exhibit complex effects on G‑protein coupled receptors, which can impact the expression and function of other members of this superfamily. These receptors feed into and interact with central signalling cascades that determine the ease by which cells engage in apoptosis, and can be used as a way to prime cancer cells to other treatments. The present study was designed to investigate the effect of combining these two agents on cancer cell lines in vitro and in a mouse model, and focused on how the sequence of administration may affect the overall action. The results showed both agents had minimal effect on cell numbers when used simultaneously; however, the combination of LDN and CBD, delivered in this specific sequence, significantly reduced the number of cells, and was superior to the regimen where the order of the agents was reversed. For example, there was a 35% reduction in cell numbers when using LDN before CBD compared to a 22% reduction when using CBD before LDN. The two agents also sensitised cells to chemotherapy as significant decreases in cell viability were observed when they were used before chemotherapy. In mouse models, the use of both agents enhanced the effect of gemcitabine, and crucially, their use resulted in no significant toxicity in the mice, which actually gained more weight compared to those without this pre‑treatment (+6.5 vs. 0%). Overall, the results highlight the importance of drug sequence when using these drugs. There is also a need to translate these observations into standard chemotherapy regimens, especially for common tumour types where treatment is often not completed due to toxicities.

Cannabinoids for the Treatment of Dermatologic Conditions

In recent years, cannabinoid products have gained popularity among the general public. The anti-inflammatory properties of cannabinoids have piqued the interest of researchers and clinicians, as they represent promising avenues for the treatment of autoimmune and inflammatory skin disorders that may be refractory to conventional therapy. The objective of this study was to review the existing literature regarding cannabinoids for dermatologic conditions.

Long-term use of cannabidiol-enriched medical cannabis in a prospective cohort of children with drug-resistant developmental and epileptic encephalopathy

We report our findings regarding effectiveness, safety, and tolerability of cannabidiol (CBD)-enriched medical cannabis as add-on therapy in children with drug-resistant epileptic encephalopathies (DEEs) after a median follow-up of 20 months.

Impact of smoking cannabidiol (CBD)-rich marijuana on driving ability

To investigate effects of smoking cannabidiol (CBD)-rich marijuana on driving ability and determine free CBD and Δ9-tetrahydrocannabinol (THC) concentrations in capillary blood samples, a randomised, double-blind, placebo-controlled, two-way crossover pilot study was conducted with 33 participants.

Comparative assessment of antimicrobial, antiradical and cytotoxic activities of cannabidiol and its propyl analogue cannabidivarin

Cannabidiol and cannabidivarin are phytocannabinoids produced by Cannabis indica and Cannabis sativa. Cannabidiol has been studied more extensively than its propyl analogue cannabidivarin. Therefore, we performed a battery of in vitro biological assays to compare the cytotoxic, antiradical and antibacterial activities of both cannabinoids.

Cannabidiol Induces Cell Death in Human Lung Cancer Cells and Cancer Stem Cells

Currently, there is no effective therapy against lung cancer due to the development of resistance. Resistance contributes to disease progression, recurrence, and mortality. The presence of so-called cancer stem cells could explain the ineffectiveness of conventional treatment, and the development of successful cancer treatment depends on the targeting also of cancer stem cells. Cannabidiol (CBD) is a cannabinoid with anti-tumor properties. However, the effects on cancer stem cells are not well understood. The effects of CBD were evaluated in spheres enriched in lung cancer stem cells and adherent lung cancer cells. We found that CBD decreased viability and induced cell death in both cell populations.

Major Phytocannabinoids and Their Related Compounds: Should We Only Search for Drugs That Act on Cannabinoid Receptors?

The most important discoveries in pharmacology, such as certain classes of analgesics or chemotherapeutics, started from natural extracts which have been found to have effects in traditional medicine. Cannabis, traditionally used in Asia for the treatment of pain, nausea, spasms, sleep, depression, and low appetite, is still a good candidate for the development of new compounds. If initially all attention was directed to the endocannabinoid system, recent studies suggest that many of the clinically proven effects are based on an intrinsic chain of mechanisms that do not necessarily involve only cannabinoid receptors.

Cannabis labelling is associated with genetic variation in terpene synthase genes

Analysis of over 100 Cannabis samples quantified for terpene and cannabinoid content and genotyped for over 100,000 single nucleotide polymorphisms indicated that Sativa- and Indica-labelled samples were genetically indistinct on a genome-wide scale. Instead, we found that Cannabis labelling was associated with variation in a small number of terpenes whose concentrations are controlled by genetic variation at tandem arrays of terpene synthase genes.

Lung cancer patient who had declined conventional cancer treatment: could the self-administration of ‘CBD oil’ be contributing to the observed tumour regression?

Conventional lung cancer treatments include surgery, chemotherapy and radiotherapy; however, these treatments are often poorly tolerated by patients. Cannabinoids have been studied for use as a primary cancer treatment. Cannabinoids, which are chemically similar to our own body’s endocannabinoids, can interact with signalling pathways to control the fate of cells, including cancer cells. We present a patient who declined conventional lung cancer treatment. Without the knowledge of her clinicians, she chose to self-administer ‘cannabidiol (CBD) oil’ orally 2–3 times daily. Serial imaging shows that her cancer reduced in size progressively from 41 mm to 10 mm over a period of 2.5 years. Previous studies have failed to agree on the usefulness of cannabinoids as a cancer treatment. This case appears to demonstrate a possible benefit of ‘CBD oil’ intake that may have resulted in the observed tumour regression. The use of cannabinoids as a potential cancer treatment justifies further research.

Understanding the Modulatory Effects of Cannabidiol on Alzheimer’s Disease

Alzheimer’s disease (AD), the most common neurodegenerative disease, is characterized by progressive cognitive impairment. The deposition of amyloid beta (Aβ) and hyperphosphorylated tau is considered the hallmark of AD pathology. Many therapeutic approaches such as Food and Drug Administration-approved cholinesterase inhibitors and N–methyl–D–aspartate receptor antagonists have been used to intervene in AD pathology. However, current therapies only provide limited symptomatic relief and are ineffective in preventing AD progression. Cannabidiol (CBD), a phytocannabinoid devoid of psychoactive responses, provides neuroprotective effects through both cannabinoid and noncannabinoid receptors. Recent studies using an AD mouse model have suggested that CBD can reverse cognitive deficits along with Aβ-induced neuroinflammatory, oxidative responses, and neuronal death.