Posts

Hippocampal differential expression underlying the neuroprotective effect of delta-9-tetrahydrocannabinol microdose on old mice

Delta-9-tetrahydrocannabinol (THC) is the primary psychoactive compound of the cannabis plant and an exogenous ligand of the endocannabinoid system. In previous studies, we demonstrated that a single microdose of THC (0.002 mg/kg, 3–4 orders of magnitude lower than the standard dose for rodents) exerts distinct, long-term neuroprotection in model mice subjected to acute neurological insults. When administered to old, healthy mice, the THC microdose induced remarkable long-lasting (weeks) improvement in a wide range of cognitive functions, including significant morphological and biochemical brain alterations. To elucidate the mechanisms underlying these effects, we analyzed the gene expression of hippocampal samples from the model mice. Samples taken 5 days after THC treatment showed significant differential expression of genes associated with neurogenesis and brain development. In samples taken 5 weeks after treatment, the transcriptional signature was shifted to that of neuronal differentiation and survival. This study demonstrated the use of hippocampal transcriptome profiling in uncovering the molecular basis of the atypical, anti-aging effects of THC microdose treatment in old mice.

Hippocampal differential expression underlying the neuroprotective effect of delta-9-tetrahydrocannabinol microdose on old mice

Delta-9-tetrahydrocannabinol (THC) is the primary psychoactive compound of the cannabis plant and an exogenous ligand of the endocannabinoid system. In previous studies, we demonstrated that a single microdose of THC (0.002 mg/kg, 3–4 orders of magnitude lower than the standard dose for rodents) exerts distinct, long-term neuroprotection in model mice subjected to acute neurological insults. When administered to old, healthy mice, the THC microdose induced remarkable long-lasting (weeks) improvement in a wide range of cognitive functions, including significant morphological and biochemical brain alterations. To elucidate the mechanisms underlying these effects, we analyzed the gene expression of hippocampal samples from the model mice. Samples taken 5 days after THC treatment showed significant differential expression of genes associated with neurogenesis and brain development. In samples taken 5 weeks after treatment, the transcriptional signature was shifted to that of neuronal differentiation and survival. This study demonstrated the use of hippocampal transcriptome profiling in uncovering the molecular basis of the atypical, anti-aging effects of THC microdose treatment in old mice.

Cannabinoids: Emerging sleep modulator

Sleep is an essential biological phase of our daily life cycle and is necessary for maintaining homeostasis, alertness, metabolism, cognition, and other key functions across the animal kingdom. Dysfunctional sleep leads to deleterious effects on health, mood, and cognition, including memory deficits and an increased risk of diabetes, stroke, and neurological disorders. Sleep is regulated by several brain neuronal circuits, neuromodulators, and neurotransmitters, where cannabinoids have been increasingly found to play a part in its modulation. Cannabinoids, a group of lipid metabolites, are regulatory molecules that bind mainly to cannabinoid receptors (CB1 and CB2). Much evidence supports the role of cannabinoid receptors in the modulation of sleep, where their alteration exhibits sleep-promoting effects, including an increase in non-rapid-eye movement sleep and a reduction in sleep latency. However, the pharmacological alteration of CB1 receptors is associated with adverse psychotropic effects, which are not exhibited in CB2 receptor alteration. Hence, selective alteration of CB2 receptors is also of clinical importance, where it could potentially be used in treating sleep disorders. Thus, it is crucial to understand the neurobiological basis of cannabinoids in sleep physiology. In this review article, the alteration of the endocannabinoid system by various cannabinoids and their respective effects on the sleep-wake cycle are discussed based on recent findings. The mechanisms of the cannabinoid receptors on sleep and wakefulness are also explored for their clinical implications and potential therapeutic use on sleep disorders.

Neuronal Cannabinoid CB1 Receptors Suppress the Growth of Melanoma Brain Metastases by Inhibiting Glutamatergic Signalling

An estimated 60% of melanoma patients develop melanoma brain metastases (MBMs). However, the molecular factors that govern the growth of MBMs are still unknown. The excitatory neurotransmitter glutamate has been shown to control the proliferation of various types of cancer cells within the brain parenchyma, but the cellular sources and molecular mechanisms involved in this process remain unclear. By their well-known role in inhibiting synaptic glutamate release, cannabinoid CB1 receptors (CB1Rs) located on glutamatergic nerve terminals are conceivably well-positioned to control the growth of MBMs. In silico data mining in cancer-genome atlases and in vitro studies with melanoma cell lines supported that a glutamate-NMDA receptor axis drives melanoma cell proliferation. Strikingly, grafting melanoma cells into the brain of mice lacking CB1Rs selectively in glutamatergic neurons increased tumour size and concomitantly activated NMDA receptors on tumour cells. Altogether, our findings reveal an unprecedented role of neuronal CB1Rs in controlling MBMs.

The Anti-Tumorigenic Role of Cannabinoid Receptor 2 in Colon Cancer: A Study in Mice and Humans

The endocannabinoid system, particularly cannabinoid receptor 2 (CB2 in mice and CNR2 in humans), has controversial pathophysiological implications in colon cancer. Here, we investigate the role of CB2 in potentiating the immune response in colon cancer in mice and determine the influence of CNR2 variants in humans. Comparing wild-type (WT) mice to CB2 knockout (CB2−/−) mice, we performed a spontaneous cancer study in aging mice and subsequently used the AOM/DSS model of colitis-associated colorectal cancer and a model for hereditary colon cancer (ApcMin/+). Additionally, we analyzed genomic data in a large human population to determine the relationship between CNR2 variants and colon cancer incidence. Aging CB2−/− mice exhibited a higher incidence of spontaneous precancerous lesions in the colon compared to WT controls.

Cannabis-Based Medicinal Products in the Management of Emotionally Unstable Personality Disorder (EUPD): A Narrative Review and Case Series

Emotionally unstable personality disorder (EUPD) is a common mental health disorder, manifesting with a range of chronic and debilitating symptoms, including impaired social functioning, unstable mood, and risky impulsive or self-injurious behaviour. Whilst the exact aetiology has not been fully elucidated, implicated factors seem to include genetic factors, environmental causes such as trauma, and neurotransmitter deficits. The literature suggests that impaired functioning of the endocannabinoid system in key brain regions responsible for emotional processing and stress response may underlie the manifestation of EUPD symptoms. The National Institute for Health and Care Excellence (NICE) 2009 guidelines state that “no drugs have established efficacy in treating or managing EUPD”, and yet, patients are commonly prescribed medication which includes antipsychotics, antidepressants, and mood stabilisers. Here we present a case series of seven participants diagnosed with EUPD and treated with cannabis-based medicinal products (CBMPs).

A randomized, controlled trial of ZYN002 cannabidiol transdermal gel in children and adolescents with fragile X syndrome

Fragile X syndrome (FXS) is associated with dysregulated endocannabinoid signaling and may therefore respond to cannabidiol therapy. CONNECT-FX was a double-blind, randomized phase 3 trial assessing efficacy and safety of ZYN002, transdermal cannabidiol gel, for the treatment of behavioral symptoms in children and adolescents with FXS.

The role of cannabinoids in neurodevelopmental disorders of children and adolescents

Neurodevelopmental disorders have a multifactorial etiology that results from the interaction between biological and environmental factors. The biological basis of many of these disorders is only partially understood, which makes therapeutic interventions, especially pharmacological ones, particularly difficult. The impact of medical cannabis on neurological and psychiatric disorders has been studied for a long time. This study aimed to review the currently available clinical and pre-clinical studies regarding the use of cannabinoids in pediatric neurodevelopmental disorders and to draw attention to the potential therapeutic role of cannabidiol in this field.

Rapid treatments for depression: Endocannabinoid system as a therapeutic target

Current first-line treatments for major depressive disorder (MDD), i.e., antidepressant drugs and psychotherapy, show delayed onset of therapeutic effect as late as 2–3 weeks or more. In the clinic, the speed of beginning of the actions of antidepressant drugs or other interventions is vital for many reasons.

A Delightful Trip Along the Pathway of Cannabinoid and Endocannabinoid Chemistry and Pharmacology

After a traumatic childhood in Europe during the Second World War, I found that scientific research in Israel was a pleasure beyond my expectations. Over the last 65 year, I have worked on the chemistry and pharmacology of natural products

The Endocannabinoid System: A Potential Therapeutic Target for Coagulopathies

The legal status of Cannabis is changing, fueling an increasing diversity of Cannabis-derived products. Because Cannabis contains dozens of chemical compounds with potential psychoactive or medicinal effects, understanding this phytochemical diversity is crucial. The legal Cannabis industry heavily markets products to consumers based on widely used labeling systems purported to predict the effects of different “strains.” We analyzed the cannabinoid and terpene content of commercial Cannabis samples across six US states, finding distinct chemical phenotypes (chemotypes) which are reliably present. By comparing the observed phytochemical diversity to the commercial labels commonly attached to Cannabis-derived product samples, we show that commercial labels do not consistently align with the observed chemical diversity.

Impact of Cannabinoid Compounds on Skin Cancer

Recent research has suggested that the endocannabinoid system offers several pharmacotherapeutic targets for drug administration as new options for the treatment and prophy- laxis of skin cancer. This review focused on the anticarcinogenic mechanisms of cannabinoids at the different levels of skin cancer progression, such as inhibition of tumour growth, proliferation, invasion and angiogenesis, as well as inducing apoptosis and autophagy.