Posts

Reviewing the Role of the Endocannabinoid System in the Pathophysiology of Depression

Major depressive disorder is a high-impact, debilitating disease and it is currently considered the most prevalent mental illness. It is associated with disability, as well as increased morbidity and mortality. Despite its significant repercussions in our society, its exact pathophysiology remains unclear and therefore, available antidepressant treatment options are limited and, in some cases, ineffective. In the past years, research has focused on the development of a multifactorial theory of depression. Simultaneously, evidence supporting the role of the endocannabinoid system in the neurobiology of neuropsychiatric diseases has emerged. Studies have shown that the endocannabinoid system strongly impacts neurotransmission, and the neuroendocrine and neuroimmune systems, which are known to be dysfunctional in depressive patients. Accordingly, common antidepressants were shown to have a direct impact on the expression of cannabinoid receptors throughout the brain. Therefore, the relationship between the endocannabinoid system and major depressive disorder is worth consideration. Nevertheless, most studies focus on smaller pieces of what is undoubtedly a larger mosaic of interdependent processes. Therefore, the present review summarizes the existing literature regarding the role of the endocannabinoid system in depression aiming to integrate this information into a holistic picture for a better understanding of the relationship between the two.

Cannabidiol (CBD) in Cancer Management

Cannabidiol (CBD) is one of the main constituents of the plant Cannabis sativa.
Surveys suggest that medicinal cannabis is popular amongst people diagnosed with cancer. CBD
is one of the key constituents of cannabis, and does not have the potentially intoxicating effects
that tetrahydrocannabinol (THC), the other key phytocannabinoid has. Research indicates the CBD
may have potential for the treatment of cancer, including the symptoms and signs associated with
cancer and its treatment. Preclinical research suggests CBD may address many of the pathways
involved in the pathogenesis of cancers. Preclinical and clinical research also suggests some evidence
of efficacy, alone or in some cases in conjunction with tetrahydrocannabinol (THC, the other key
phytocannabinoid in cannabis), in treating cancer-associated pain, anxiety and depression, sleep
problems, nausea and vomiting, and oral mucositis that are associated with cancer and/or its
treatment. Studies also suggest that CBD may enhance orthodox treatments with chemotherapeutic
agents and radiation therapy and protect against neural and organ damage. CBD shows promise as
part of an integrative approach to the management of cancer.

Major Phytocannabinoids and Their Related Compounds: Should We Only Search for Drugs That Act on Cannabinoid Receptors?

The most important discoveries in pharmacology, such as certain classes of analgesics or chemotherapeutics, started from natural extracts which have been found to have effects in traditional medicine. Cannabis, traditionally used in Asia for the treatment of pain, nausea, spasms, sleep, depression, and low appetite, is still a good candidate for the development of new compounds. If initially all attention was directed to the endocannabinoid system, recent studies suggest that many of the clinically proven effects are based on an intrinsic chain of mechanisms that do not necessarily involve only cannabinoid receptors.

Understanding the Modulatory Effects of Cannabidiol on Alzheimer’s Disease

Alzheimer’s disease (AD), the most common neurodegenerative disease, is characterized by progressive cognitive impairment. The deposition of amyloid beta (Aβ) and hyperphosphorylated tau is considered the hallmark of AD pathology. Many therapeutic approaches such as Food and Drug Administration-approved cholinesterase inhibitors and N–methyl–D–aspartate receptor antagonists have been used to intervene in AD pathology. However, current therapies only provide limited symptomatic relief and are ineffective in preventing AD progression. Cannabidiol (CBD), a phytocannabinoid devoid of psychoactive responses, provides neuroprotective effects through both cannabinoid and noncannabinoid receptors. Recent studies using an AD mouse model have suggested that CBD can reverse cognitive deficits along with Aβ-induced neuroinflammatory, oxidative responses, and neuronal death.

Cannabinoids in the landscape of cancer

Cannabinoids are a group of terpenophenolic compounds derived from the Cannabis sativa L. plant. There is a growing body of evidence from cell culture and animal studies in support of cannabinoids possessing anticancer properties.

Cannabis and Cannabis Derivatives for Abdominal Pain Management in Inflammatory Bowel Disease

For centuries, cannabis and its components have been used to manage a wide variety of symptoms associated with many illnesses. Gastrointestinal (GI) diseases are no exception in this regard. Individuals suffering from inflammatory bowel disease (IBD) are among those who have sought out the ameliorating properties of this plant. As legal limitations of its use have eased, interest has grown from both patients and their providers regarding the potential of cannabis to be used in the clinical setting.

The endocannabinoid system, cannabis, and cannabidiol: Implications in urology and men’s health

The endocannabinoid system is a neuromodulatory system responsible for partial regulation of cognitive and emotional processes in the human central nervous system such as behavior, mood disorders, and neurologic disorders such as epilepsy. The endocannabinoid system is also prevalent throughout the peripheral nervous system and human body and its receptors and signaling pathways are present and active in areas including the male and female reproductive tracts and organ systems such as the urologic and gastrointestinal system.

A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid

The endocannabinoid system (ECS), a conserved physiological system emerged as a novel pharmacological target for its significant role and potential therapeutic benefits ranging from neurological diseases to cancer. Among both, CB1 and CB2R types, CB2R have received attention for its pharmacological effects as antioxidant, anti-inflammatory, immunomodulatory and antiapoptotic that can be achieved without causing psychotropic adverse effects through CB1R.

Functional Fine-Tuning of Metabolic Pathways by the Endocannabinoid System—Implications for Health and Disease

The endocannabinoid system (ECS) employs a huge network of molecules (receptors, ligands, and enzymatic machinery molecules) whose interactions with other cellular networks have still not been fully elucidated. Endogenous cannabinoids are molecules with the primary function of control of multiple metabolic pathways. Maintenance of tissue and cellular homeostasis by functional fine-tuning of essential metabolic pathways is one of the key characteristics of the ECS. It is implicated in a variety of physiological and pathological states and an attractive pharmacological target yet to reach its full potential. This review will focus on the involvement of ECS in glucose and lipid metabolism, food intake regulation, immune homeostasis, respiratory health, inflammation, cancer and other physiological and pathological states will be substantiated using freely available data from open-access databases, experimental data and literature review.

Epigenetic control of skin differentiation genes by phytocannabinoids

Endocannabinoid signalling has been shown to have a role in the control of epidermal physiology, whereby anandamide is able to regulate the expression of skin differentiation genes through DNA methylation. Here, we investigated the possible epigenetic regulation of these genes by several phytocannabinoids, plant‐derived cannabinoids that have the potential to be novel therapeutics for various human diseases.

Therapeutic potential of cannabinoids in combination cancer therapy

SCC member Kenzi Riboulet-Zemouli identifies a coherent nomenclature for cannabis products (whether derived from Cannabis sativa L. or not). The paper was published in Drug Science, Policy and Law in December of 2020.