Posts

Unveiling the Potential of Cannabinoids in Multiple Sclerosis and the Dawn of Nano-Cannabinoid Medicine

Multiple sclerosis is the predominant autoimmune disorder affecting the central nervous system in adolescents and adults. Specific treatments are categorized as disease-modifying, whereas others are symptomatic treatments to alleviate painful symptoms. Currently, no singular conventional therapy is universally effective for all patients across all stages of the illness. Nevertheless, cannabinoids exhibit significant promise in their capacity for neuroprotection, anti-inflammation, and immunosuppression. This review will examine the traditional treatment for multiple sclerosis, the increasing interest in using cannabis as a treatment method, its role in protecting the nervous system and regulating the immune system, commercially available therapeutic cannabinoids, and the emerging use of cannabis in nanomedicine. In conclusion, cannabinoids exhibit potential as a disease-modifying treatment rather than merely symptomatic relief. However, further research is necessary to unveil their role and establish the safety and advancements in nano-cannabinoid medicine, offering the potential for reduced toxicity and fewer adverse effects, thereby maximizing the benefits of cannabinoids.

Tetrahydrocannabinol and Cannabidiol for Pain Treatment—An Update on the Evidence

In light of the current International Association for the Study of Pain (IASP) clinical practice guidelines (CPGs) and the European Society for Medical Oncology (ESMO) guidelines, the topic of cannabinoids in relation to pain remains controversial, with insufficient research presently available. Cannabinoids are an attractive pain management option due to their synergistic effects when administered with opioids, thereby also limiting the extent of respiratory depression. On their own, however, cannabinoids have been shown to have the potential to relieve specific subtypes of chronic pain in adults, although controversies remain. Among these subtypes are neuropathic, musculoskeletal, cancer, and geriatric pain. Another interesting feature is their effectiveness in chemotherapy-induced peripheral neuropathy (CIPN). Analgesic benefits are hypothesized to extend to HIV-associated neuropathic pain, as well as to lower back pain in the elderly. The aim of this article is to provide an up-to-date review of the existing preclinical as well as clinical studies, along with relevant systematic reviews addressing the roles of various types of cannabinoids in neuropathic pain settings.

Cannabinoids and endocannabinoids as therapeutics for nervous system disorders: preclinical models and clinical studies

Cannabinoids are lipophilic substances derived from Cannabis sativa that can exert a variety of effects in the human body. They have been studied in cellular and animal models as well as in human clinical trials for their therapeutic benefits in several human diseases. Some of these include central nervous system (CNS) diseases and dysfunctions such as forms of epilepsy, multiple sclerosis, Parkinson’s disease, pain and neuropsychiatric disorders. In addition, the endogenously produced cannabinoid lipids, endocannabinoids, are critical for normal CNS function, and if controlled or modified, may represent an additional therapeutic avenue for CNS diseases. This review discusses in vitro cellular, ex vivo tissue and in vivo animal model studies on cannabinoids and their utility as therapeutics in multiple CNS pathologies. In addition, the review provides an overview on the use of cannabinoids in human clinical trials for a variety of CNS diseases. Cannabinoids and endocannabinoids hold promise for use as disease modifiers and therapeutic agents for the prevention or treatment of neurodegenerative diseases and neurological disorders.

Hippocampal differential expression underlying the neuroprotective effect of delta-9-tetrahydrocannabinol microdose on old mice

Delta-9-tetrahydrocannabinol (THC) is the primary psychoactive compound of the cannabis plant and an exogenous ligand of the endocannabinoid system. In previous studies, we demonstrated that a single microdose of THC (0.002 mg/kg, 3–4 orders of magnitude lower than the standard dose for rodents) exerts distinct, long-term neuroprotection in model mice subjected to acute neurological insults. When administered to old, healthy mice, the THC microdose induced remarkable long-lasting (weeks) improvement in a wide range of cognitive functions, including significant morphological and biochemical brain alterations. To elucidate the mechanisms underlying these effects, we analyzed the gene expression of hippocampal samples from the model mice. Samples taken 5 days after THC treatment showed significant differential expression of genes associated with neurogenesis and brain development. In samples taken 5 weeks after treatment, the transcriptional signature was shifted to that of neuronal differentiation and survival. This study demonstrated the use of hippocampal transcriptome profiling in uncovering the molecular basis of the atypical, anti-aging effects of THC microdose treatment in old mice.

Hippocampal differential expression underlying the neuroprotective effect of delta-9-tetrahydrocannabinol microdose on old mice

Delta-9-tetrahydrocannabinol (THC) is the primary psychoactive compound of the cannabis plant and an exogenous ligand of the endocannabinoid system. In previous studies, we demonstrated that a single microdose of THC (0.002 mg/kg, 3–4 orders of magnitude lower than the standard dose for rodents) exerts distinct, long-term neuroprotection in model mice subjected to acute neurological insults. When administered to old, healthy mice, the THC microdose induced remarkable long-lasting (weeks) improvement in a wide range of cognitive functions, including significant morphological and biochemical brain alterations. To elucidate the mechanisms underlying these effects, we analyzed the gene expression of hippocampal samples from the model mice. Samples taken 5 days after THC treatment showed significant differential expression of genes associated with neurogenesis and brain development. In samples taken 5 weeks after treatment, the transcriptional signature was shifted to that of neuronal differentiation and survival. This study demonstrated the use of hippocampal transcriptome profiling in uncovering the molecular basis of the atypical, anti-aging effects of THC microdose treatment in old mice.

Hippocampal differential expression underlying the neuroprotective effect of delta-9-tetrahydrocannabinol microdose on old mice

Delta-9-tetrahydrocannabinol (THC) is the primary psychoactive compound of the cannabis plant and an exogenous ligand of the endocannabinoid system. In previous studies, we demonstrated that a single microdose of THC (0.002 mg/kg, 3–4 orders of magnitude lower than the standard dose for rodents) exerts distinct, long-term neuroprotection in model mice subjected to acute neurological insults. When administered to old, healthy mice, the THC microdose induced remarkable long-lasting (weeks) improvement in a wide range of cognitive functions, including significant morphological and biochemical brain alterations. To elucidate the mechanisms underlying these effects, we analyzed the gene expression of hippocampal samples from the model mice. Samples taken 5 days after THC treatment showed significant differential expression of genes associated with neurogenesis and brain development. In samples taken 5 weeks after treatment, the transcriptional signature was shifted to that of neuronal differentiation and survival. This study demonstrated the use of hippocampal transcriptome profiling in uncovering the molecular basis of the atypical, anti-aging effects of THC microdose treatment in old mice.

Running High: Cannabis Users’ Subjective Experience of Exercise During Legal Market Cannabis Use Versus No Use in a Naturalistic Setting

The use of cannabis with various forms of exercise (e.g., running) has received increased media attention in recent years, contradicting the popular stereotype that cannabis is associated with sedentary behavior. Although cross-sectional evidence suggests a positive association between cannabis use and exercise engagement, to date, the acute effects of cannabis on exercise remain unclear. The present within-subjects crossover study compared participants’ experiences of running after ad libitum use of legal market cannabis (cannabis run) to running without cannabis (non-cannabis run) in a real-world setting. Participants (n=49) were cannabis users between the ages of 21 and 49 years (mean=30.82, standard deviation [SD]=6.21). The majority of participants were male (61.5%) and non-Hispanic White (81.6%).

The Effectiveness and Adverse Events of Cannabidiol and Tetrahydrocannabinol Used in the Treatment of Anxiety Disorders in a PTSD Subpopulation: An Interim Analysis of an Observational Study

Anxiety is a condition for which current treatments are often limited by adverse events (AEs). Components of medicinal cannabis, cannabidiol (CBD) and tetrahydrocannabinol (THC), have been proposed as potential treatments for anxiety disorders, specifically posttraumatic stress disorder (PTSD). To evaluate quality-of-life outcomes after treatment with various cannabis formulations to determine the effectiveness and associated AEs.

Clinical outcome data of anxiety patients treated with cannabis-based medicinal products in the United Kingdom: a cohort study from the UK Medical Cannabis Registry

Cannabis-based medicinal products (CBMPs) have been identified as novel therapeutics for generalised anxiety disorder (GAD) based on pre-clinical models; however, there is a paucity of high-quality evidence on their effectiveness and safety. This study aimed to evaluate the clinical outcomes of patients with GAD treated with dried flower, oil-based preparations, or a combination of both CBMPs. A prospective cohort study of patients with GAD (n = 302) enrolled in the UK Medical Cannabis Registry prescribed oil or flower-based CBMPs was performed. Primary outcomes were changes in generalised anxiety disorder-7 (GAD-7) questionnaires at 1, 3, and 6 months compared to baseline. Secondary outcomes were single-item sleep quality scale (SQS) and health-related quality of life index (EQ-5D-5L) questionnaires at the same time points. These changes were assessed by paired t-tests. Adverse events were assessed in line with CTCAE (Common Terminology Criteria for Adverse Events) v4.0.

Cannabinoids in Treating Parkinson’s Disease Symptoms: A Systematic Review of Clinical Studies

Parkinson’s disease (PD) is a serious neurodegenerative condition impacting many individuals worldwide. There is a need for new non-invasive treatments of PD. Cannabinoids in the form of cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) may offer utility as treatment, and our objective was hence to conduct a systematic review regarding the clinical evidence for the efficacy and safety of cannabinoids in treating PD.

Assessment of clinical outcomes in patients with fibromyalgia: Analysis from the UK Medical Cannabis Registry

There are limited therapeutic options for individuals with fibromyalgia. The aim of this study is to analyze changes in health-related quality of life and incidence of adverse events of those prescribed cannabis-based medicinal products (CBMPs) for fibromyalgia.  Patients treated with CBMPs for a minimum of 1 month were identified from the UK Medical Cannabis Registry. Primary outcomes were changes in validated patient-reported outcome measures (PROMs). A p-value of <.050 was deemed statistically significant.

Table 2 Descriptions of frequently consumed Cannabis flower chemovar index codes

Little is known about the frequency with which different combinations of phytochemicals (chemovars) arise in Cannabis flower or whether common chemovars are associated with distinct pharmacodynamics and patient health outcomes. This study created a clinically relevant, user-friendly, scalable chemovar indexing system summarizing primary cannabinoid and terpene contents and tested whether the most frequently consumed chemovars differ in their treatment effectiveness and experienced side effects.